116 research outputs found

    Towards Streaming Evaluation of Queries with Correlation in Complex Event Processing

    Get PDF
    Complex event processing (CEP) has gained a lot of attention for evaluating complex patterns over high-throughput data streams. Recently, new algorithms for the evaluation of CEP patterns have emerged with strong guarantees of efficiency, i.e. constant update-time per tuple and constant-delay enumeration. Unfortunately, these techniques are restricted for patterns with local filters, limiting the possibility of using joins for correlating the data of events that are far apart. In this paper, we embark on the search for efficient evaluation algorithms of CEP patterns with joins. We start by formalizing the so-called partition-by operator, a standard operator in data stream management systems to correlate contiguous events on streams. Although this operator is a restricted version of a join query, we show that partition-by (without iteration) is equally expressive as hierarchical queries, the biggest class of full conjunctive queries that can be evaluated with constant update-time and constant-delay enumeration over streams. To evaluate queries with partition-by we introduce an automata model, called chain complex event automata (chain-CEA), an extension of complex event automata that can compare data values by using equalities and disequalities. We show that this model admits determinization and is expressive enough to capture queries with partition-by. More importantly, we provide an algorithm with constant update time and constant delay enumeration for evaluating any query definable by chain-CEA, showing that all CEP queries with partition-by can be evaluated with these strong guarantees of efficiency

    On the Expressiveness of Languages for Complex Event Recognition

    Get PDF
    Complex Event Recognition (CER for short) has recently gained attention as a mechanism for detecting patterns in streams of continuously arriving event data. Numerous CER systems and languages have been proposed in the literature, commonly based on combining operations from regular expressions (sequencing, iteration, and disjunction) and relational algebra (e.g., joins and filters). While these languages are naturally first-order, meaning that variables can only bind single elements, they also provide capabilities for filtering sets of events that occur inside iterative patterns; for example requiring sequences of numbers to be increasing. Unfortunately, these type of filters usually present ad-hoc syntax and under-defined semantics, precisely because variables cannot bind sets of events. As a result, CER languages that provide filtering of sequences commonly lack rigorous semantics and their expressive power is not understood. In this paper we embark on two tasks: First, to define a denotational semantics for CER that naturally allows to bind and filter sets of events; and second, to compare the expressive power of this semantics with that of CER languages that only allow for binding single events. Concretely, we introduce Set-Oriented Complex Event Logic (SO-CEL for short), a variation of the CER language introduced in [Grez et al., 2019] in which all variables bind to sets of matched events. We then compare SO-CEL with CEL, the CER language of [Grez et al., 2019] where variables bind single events. We show that they are equivalent in expressive power when restricted to unary predicates but, surprisingly, incomparable in general. Nevertheless, we show that if we restrict to sets of binary predicates, then SO-CEL is strictly more expressive than CEL. To get a better understanding of the expressive power, computational capabilities, and limitations of SO-CEL, we also investigate the relationship between SO-CEL and Complex Event Automata (CEA), a natural computational model for CER languages. We define a property on CEA called the *-property and show that, under unary predicates, SO-CEL captures precisely the subclass of CEA that satisfy this property. Finally, we identify the operations that SO-CEL is lacking to characterize CEA and introduce a natural extension of the language that captures the complete class of CEA under unary predicates

    Streaming Enumeration on Nested Documents

    Get PDF
    Some of the most relevant document schemas used online, such as XML and JSON, have a nested format. In the last decade, the task of extracting data from nested documents over streams has become especially relevant. We focus on the streaming evaluation of queries with outputs of varied sizes over nested documents. We model queries of this kind as Visibly Pushdown Transducers (VPT), a computational model that extends visibly pushdown automata with outputs and has the same expressive power as MSO over nested documents. Since processing a document through a VPT can generate a massive number of results, we are interested in reading the input in a streaming fashion and enumerating the outputs one after another as efficiently as possible, namely, with constant-delay. This paper presents an algorithm that enumerates these elements with constant-delay after processing the document stream in a single pass. Furthermore, we show that this algorithm is worst-case optimal in terms of update-time per symbol and memory usage

    Constant-Delay Enumeration for SLP-Compressed Documents

    Get PDF

    Composition and Inversion of Schema Mappings

    Full text link
    In the recent years, a lot of attention has been paid to the development of solid foundations for the composition and inversion of schema mappings. In this paper, we review the proposals for the semantics of these crucial operators. For each of these proposals, we concentrate on the three following problems: the definition of the semantics of the operator, the language needed to express the operator, and the algorithmic issues associated to the problem of computing the operator. It should be pointed out that we primarily consider the formalization of schema mappings introduced in the work on data exchange. In particular, when studying the problem of computing the composition and inverse of a schema mapping, we will be mostly interested in computing these operators for mappings specified by source-to-target tuple-generating dependencies

    Pumping Lemmas for Weighted Automata

    Get PDF
    We present three pumping lemmas for three classes of functions definable by fragments of weighted automata over the min-plus semiring and the semiring of natural numbers. As a corollary we show that the hierarchy of functions definable by unambiguous, finitely-ambiguous, polynomially-ambiguous weighted automata, and the full class of weighted automata is strict for the min-plus semiring
    • …
    corecore